JOURNAL OF APPROXIMATION THEORY 58, 68-77 (1989)

Best Approximation in $L^{p}(I, X)$, 0

W. DEEB AND R. KHALIL

Department of Mathematics, Kuwait University, Kuwait

Communicated by R. Bojanic

Received August 10, 1987; revised December 10, 1987

Let X be a real Banach space and (Ω, μ) a finite measure space. If ϕ is an increasing subadditive continuous function on $[0, \infty)$ with $\phi(0) = 0$, then we set $L^{\phi}(\mu, X) = \{f: \Omega \to X: ||f||_{\phi} = \int \phi(||f(t)||) d\mu(t) < \infty\}$. One of the main results of this paper is: "For a closed subspace Y of X, $L^{\phi}(\mu, Y)$ is proximinal in $L^{\phi}(\mu, X)$ if and only if $L^{1}(\mu, Y)$ is proximinal in $L^{1}(\mu, X)$." Hence if Y is a reflexive subspace of X, then $L^{p}(\mu, Y)$ is proximinal in $L^{p}(\mu, X)$ for all $0 . Other results on proximinality of subsets of <math>l^{\phi}$ and $L^{\phi}(\mu)$ are presented as well. © 1989 Academic Press, Inc.

INTRODUCTION

Let X be a real Banach space and Y a closed subspace of X. For $x \in X$, we let $d(x, Y) = \inf\{||x - y|| : y \in Y\}$. The subspace Y is called proximinal in X if, for every $x \in X$, there exists $y \in Y$ such that d(x, Y) = ||x - y||. Such an element $y \in Y$ is called a best approximant of x in Y. Set P(x, Y) = $\{y: d(x, Y) = ||x - y||\}$. In general P(x, Y) is empty. It is a very general and important question "whether a subspace Y is proximinal in X or not." A compactness argument shows that every finite-dimensional subspace Y is proximinal in X. In case X is a metric linear space, then this is no longer true [1]. We refer the reader to Singer [5], for more on best approximation in Banach and metric spaces.

In this paper we study proximinality of some subsets and subspaces of the sequence metric linear space $l^{\phi}(X)$ and the function metric linear space $L^{\phi}(X)$, for modulus function ϕ and some Banach space X.

In Section 2, we prove that if Y is any proximinal subspace of X, then $l^{\phi}(Y)$ is proximinal in $l^{\phi}(X)$. Further, we prove that if Y is a reflexive subspace of X, then $L^{\phi}(Y)$ is proximinal in $L^{\phi}(X)$. In Section 3, the proximinality of some closed subsets in l^{ϕ} is discussed. Throughout this paper, (Ω, μ) is a finite measure space. \mathcal{C} denotes the complex numbers.

1. The Spaces $l^{\phi}(X)$ and $L^{\phi}(\mu, X)$

A function $\phi: [0, \infty) \rightarrow [0, \infty)$ is called a modulus function if:

- (i) ϕ is continuous and increasing,
- (ii) $\phi(x) = 0$ if and only if x = 0,
- (iii) $\phi(x+y) \leq \phi(x) + \phi(y)$.

Examples of such functions are $\phi(x) = x^p$, $0 , and <math>\phi(x) = \ln(1+x)$. In fact if ϕ is a modulus function then $\psi(x) = \phi(x)/(1 + \phi(x))$ is a modulus function. Further, the composition of two modulus functions is a modulus function.

For a modulus function ϕ and a measure space (Ω, μ) we set

$$l^{\phi} = \left\{ (a_n) \colon \sum_{n=1}^{\infty} \phi |a_n| < \infty \right\}$$
$$L^{\phi}(\mu) = \left\{ f \colon \Omega \to \mathcal{Q} \colon \int \phi |f| \ d\mu < \infty \right\}.$$

For $a = (a_n) \in l^{\phi}$ and $f \in L^{\phi}(\mu)$ one can define

$$||a||_{\phi} = \sum_{n=1}^{\infty} \phi |a_n|$$
 and $||f||_{\phi} = \int \phi |f| d\mu$.

Then one can easily prove:

LEMMA 1.1. $(l^{\phi}, || ||_{\phi})$ and $(L^{\phi}(\mu), || ||_{\phi})$ are complete metric linear spaces.

Further, it is known that $l^{\phi} \subseteq l^1$ and $L^{\phi}(\mu) \supseteq L^1(\mu)$. For more on l^{ϕ} and $L^{\phi}(\mu)$ we refer the reader to [2-4].

For a Banach space X, we define

$$l^{\phi}(X) = \left\{ (f(n)) \colon \sum_{n=1}^{\infty} \phi \| f(n) \| < \infty, f(n) \in X \right\}$$
$$L^{\phi}(\mu, X) = \left\{ g \colon \Omega \to X \colon \int \phi \| g(t) \| d\mu(t) < \infty \right\}.$$

For $f \in l^{\phi}(X)$ and $g \in L^{\phi}(\mu, X)$, set

$$||f||_{\phi} = \sum \phi ||f(n)||$$
 and $||g||_{\phi} = \int \phi ||g(t)|| d\mu(t).$

Then the following result is similar to Lemma 1.1:

LEMMA 1.2. $(l^{\phi}(X), || ||_{\phi})$ and $(L^{\phi}(\mu, X), || ||_{\phi})$ are complete metric linear spaces. If $l^{\phi} \neq l^{1}$ $(L^{\phi}(\mu) \neq L^{1}(\mu))$, then l^{ϕ} $(L^{\phi}(\mu))$ is not locally convex.

Let $l^{\phi} \otimes X$ be the algebraic tensor product of l^{ϕ} with X. Hence

$$l^{\phi} \otimes X = \left\{ \sum_{i=1}^{n} u_i \otimes x_i \colon u_i \in l^{\phi} \text{ and } x_i \in X \right\}.$$

For $f \in l^{\phi} \otimes X$, we define

$$||f||_{\pi(\phi)} = \inf \left\{ \sum_{i=1}^{n} ||u_i||_{\phi} \cdot \phi ||x_i|| \right\},\$$

where the infimum is taken over all representations $f = \sum_{i=1}^{n} u_i \otimes x_i$.

LEMMA 1.3. If ϕ is a modulus function that satisfies $\phi(a \cdot b) \leq \phi(a) \cdot \phi(b)$, then $\| \|_{\pi(\phi)}$ is a metric on $l^{\phi} \otimes X$.

Proof. The only point to be proved is: If $||f||_{\pi(\phi)} = 0$ then f = 0. To see that:

If $||f||_{\pi(\phi)} = 0$, then for every k there exists a representation $f = \sum_{i=1}^{n_k} u_i^k \otimes x_i^k$ such that $\sum_{i=1}^{n_k} ||u_i^k||_{\phi} \cdot \phi ||x_i^k|| < 1/k$. Hence

$$\sum_{i=1}^{n_k} \left[\phi \| x_i \| \cdot \sum_{j=1}^{\infty} \phi | u_i^k(j) | \right] < \frac{1}{k}.$$

The subadditivity and submultiplicativity of ϕ imply:

$$\phi\left[\sum_{i=1}^{n_k} \|x_i\| \cdot \sum_{j=1}^{\infty} |u_i^k(j)|\right] < \frac{1}{k}.$$

It follows that $\inf \sum_{i=1}^{n_k} \|u_i^k\|_1 \|x_i\| = 0$, where $\|u_i^k\|_1$ is the norm of u_i^k as an element in l^1 . It follows that f = 0. Q.E.D.

The metric space $l^{\phi} \otimes X$ need not be complete. We set $l^{\phi} \otimes_{\phi} X$ to denote its completion. In a very similar way we define $L^{\phi} \otimes_{\phi} X$. The space $l^{\phi} \otimes_{\phi} X$ can be considered as a space of ϕ -nuclear operators from c_0 into X.

Using the idea in the proof of Theorem 2.1 [3], one can prove

THEOREM 1.4. The spaces $(l^{\phi} \otimes_{\phi} X, || ||_{\pi(\phi)})$ and $(L^{\phi} \otimes_{\phi} X, || ||_{\pi(\phi)})$ are complete metric linear spaces.

The following, though simple, is an interesting result:

THEOREM 1.5. Let ϕ be a submultiplicative modulus function. Then:

- (i) $l^{\phi} \otimes_{\phi} X$ is isometrically isomorphic to $l^{\phi}(X)$,
- (ii) $L^{\phi}(\mu) \otimes_{\phi} X$ is isometrically isomorphic to $L^{\phi}(\mu, X)$.

Proof. It is enough to prove (ii), for (i) is a special case of (ii). Since simple functions are dense in $L^{\phi}(\mu)$, it follows that the set of elements of the form $\sum_{i=1}^{n} 1_{E_{i}, x_{i}}, E_{i} \cap E_{j}$, is the empty set for $i \neq j$ and is dense in $L^{\phi}(\mu, X)$ and that the set of elements of the form $\sum_{i=1}^{n} 1_{E_{i} \times x_{i}}$, $E_{i} \cap E_{j}$, is the form $\sum_{i=1}^{n} 1_{E_{i} \times x_{i}}$ is dense in $L^{\phi}(\mu) \otimes_{\phi} X$.

and that the set of elements of the form $\sum_{i=1}^{n} 1_{E_i \otimes x_i}$ is dense in $L^{\phi}(\mu) \otimes_{\phi} X$. For $f \in L^{\phi}(\mu) \otimes X$, $f = \sum_{i=1}^{n} u_i \otimes x_i$, the function $F_f(t) = \sum_{i=1}^{n} u_i(t) x_i \in L^{\phi}(\mu, X)$. Further

$$\|F_f\|_{\phi} = \sum_{i=1}^n \int \phi \|u_i(t) x_i\| d\mu(t) \qquad (\text{since } \phi \text{ is subadditive})$$
$$= \sum_{i=1}^n \int \phi \|u_i(t)\| \cdot \phi \|x_i\| d\mu(t) \qquad (\text{since } \phi \text{ is submultiplicative})$$
$$\leqslant \sum_{i=1}^n \|u_i\|_{\phi} \cdot \phi \|x_i\|.$$

Since this is true for every representation of f, it follows that $||F_f||_{\phi} \leq ||f||_{\pi(\phi)}$. Thus the map $\mathscr{F}(f) = F_f$ is bounded on a dense subspace of $L^{\phi}(\mu) \otimes_{\phi} X$.

For $f = \sum_{i=1}^{n} 1_{E_i} \otimes x_i$, E_i disjoint measurable sets in Ω , one has

$$\|F_{f}\|_{\phi} = \sum_{i=1}^{n} \mu(E_{i}) \cdot \phi \|x_{i}\|$$
$$= \sum_{i=1}^{n} \|1_{E_{i}}\|_{\phi} \cdot \phi \|x_{i}\|$$
$$\geq \|f\|_{\pi(\phi)}.$$

Thus \mathscr{F} is an isometric operator from a dense subspace of $L^{\phi}(\mu) \otimes_{\phi} X$ onto a dense subspace of $L^{\phi}(\mu, X)$. Consequently $\mathscr{F}: L^{\phi}(\mu) \otimes_{\phi} X \rightarrow L^{\phi}(\mu, X)$ is an isometric onto operator. Q.E.D.

2. Best Approximation in $l^{\phi}(X)$ and $L^{\phi}(\mu, X)$

In this section, we assume ϕ is a strictly increasing modulus function and Y a closed subspace of X.

THEOREM 2.1. If Y is a proximinal subspace of X, then $l^{\phi}(Y)$ is a proximinal subspace of $l^{\phi}(X)$.

Proof. Let $(f(n)) \in l^{\phi}(X)$. Since Y is proximinal in X, for each n, there exists $g(n) \in Y$ such that d(f(n), Y) = ||f(n) - g(n)||. Further, $||g(n)|| \leq 2 ||f(n)||$. Consequently $g = (g(n)) \in l^{\phi}(Y)$. We claim that g is a best approximant for f in $l^{\phi}(Y)$. To see that, let h be any element of $l^{\phi}(Y)$. Then

$$\|f-h\|_{\phi} = \sum_{n=1}^{n} \phi \|f(n) - h(n)\|$$
$$\geq \sum_{n=1}^{\infty} \phi \|f(n) - g(n)\|$$
$$= \|f-g\|_{\phi}.$$

Hence $d(f, l^{\phi}(Y)) = ||f - g||_{\phi}$, and $g \in P(f, l^{\phi}(Y))$.

The subspace Y is called a ϕ -summand of X if there is a bounded projection $Q: X \to Y$ such that $\phi(||x||) = \phi ||Qx|| + \phi(||(I-Q)x||)$ for all $x \in X$ where I is the identity map on X. Clearly every ϕ -summand Y of X is proximinal. In fact for $x \in X$, $Q(x) \in P(x, Y)$. Theorem 2.1 is not true in general for $L^{\phi}(\mu, X)$. However, the following is true:

THEOREM 2.2. Let Y be a ϕ -summand of X. Then $L^{\phi}(\mu, Y)$ is a 1-summand of $L^{\phi}(\mu, X)$.

Proof. Let $Q: X \to Y$ be the associated projection for Y. Let $\tilde{Q}: L^{\phi}(\mu, X) \to L^{\phi}(\mu, Y)$ be defined by

$$\tilde{Q}(f)(t) = Q(f(t)).$$

Clearly $\tilde{Q}(f) \in L^{\phi}(\mu, Y)$. Further

$$\phi \|f(t)\| = \phi \|Q(f(t)\| + \phi \|(I - Q) f(t)\|.$$

Hence,

$$\int \phi \|f(t)\| d\mu(t) = \int \phi \|Q(f(t))\| d\mu(t) + \int \phi \|(I-Q) f(t)\| d\mu(t).$$

So,

$$\|f\|_{\phi} = \|\tilde{Q}(f)\|_{\phi} + \|(I - \tilde{Q})f\|_{\phi},$$

and consequently \tilde{Q} is the required projection.

Q.E.D.

Q.E.D.

As a corollary, we have

COROLLARY 2.3. If Y is a ϕ -summand of X, then $L^{\phi}(\mu, Y)$ is proximinal in $L^{\phi}(\mu, X)$.

THEOREM 2.4. Let Y be a proximinal subspace of X. Then for every simple function $f \in L^{\phi}(\mu, X)$, $P(f, L^{\phi}(\mu, Y))$ is not empty.

Proof. Let $f = \sum_{i=1}^{n} 1_{E_i} x_i$, where E_i are disjoint measurable sets in Ω . Set $g = \sum_{i=1}^{n} 1_{E_i} y_i$, where $y_i \in P(x_i, Y)$. If h is any element in $L^{\phi}(\mu, Y)$, then

$$\|f - h\|_{\phi} = \int \phi \|f(t) - h(t)\| d\mu(t)$$

= $\sum_{i=1}^{n} \int_{E_{i}} \phi \|f(t) - h(t)\| d\mu(t)$
= $\sum_{i=1}^{n} \int_{E_{i}} \phi \|x_{i} - h(t)\| d\mu(t)$
 $\geqslant \sum_{i=1}^{n} \int_{E_{i}} \phi \|x_{i} - y_{i}\| d\mu(t)$
= $\int \phi \|f(t) - g(t)\| d\mu(t).$

Hence $||f - g||_{\phi} = \inf\{||f - h||_{\phi}: h \in L^{\phi}(\mu, Y)\}.$

Q.E.D.

Now we prove the main result of this section:

THEOREM 2.5. Let Y be a closed subspace of X. The following are equivalent:

- (i) $L^{\phi}(\mu, Y)$ is proximinal in $L^{\phi}(\mu, X)$,
- (ii) $L^1(\mu, Y)$ is proximinal in $L^1(\mu, X)$.

Proof. (i) \rightarrow (ii). Let $f \in L^1(\mu, X)$. Then $f \in L^{\phi}(\mu, X)$; hence there exists $g \in L^{\phi}(\mu, Y)$ such that $||f - g||_{\phi} \leq ||f - h||_{\phi}$ for all $h \in L^{\phi}(\mu, Y)$. By an argument similar to the one in Lemma 2.10 of [7] we conclude that $||f(t) - g(t)|| \leq ||f(t) - y||$ for all $y \in Y$ a.e. t. Since $0 \in Y$ one gets $||g(t)|| \leq 2 ||f(t)||$ a.e. t. Hence $g \in L^1(\mu, Y)$. Also $\int ||f(t) - g(t)|| d\mu \leq \int ||f(t) - \theta(t)|| d\mu$ for all $\theta \in L^1(\mu, Y)$.

Conversely, (ii) \rightarrow (i). Define a map $J: L^{\phi}(\mu, X) \rightarrow L^{1}(\mu, X)$ by $J(f) = \hat{f}$ where $\hat{f}(t) = (\phi(||f(t)||)/||f(t)||) f(t)$, if $f(t) \neq 0$ and $\hat{f}(t) = 0$ if f(t) = 0. Clearly $||\hat{f}||_{1} = ||f||_{\phi}$. Also since ϕ is one-to-one it follows that J is one-toone. To show that J is onto, let $g \in L^{1}(\mu, X)$ and take $f(t) = (\phi^{-1}(||g(t)||)/||g(t)||) g(t)$ if g(t) = 0, and zero otherwise. Then $||f||_{\phi} = ||g||_{1}$; hence $f \in L^{\phi}(\mu, X)$ and J(f) = g. It is also clear that

$$J(L^{\phi}(\mu, Y)) = L^{1}(\mu, Y).$$

Now let $f \in L^{\phi}(\mu, X)$. Then $\hat{f} \in L^{1}(\mu, X)$ and there exists $\hat{g} \in L^{1}(\mu, Y)$ such

that $\|\hat{f} - \hat{g}\|_1 \leq \|\hat{f} - \hat{h}\|_1$ for all $\hat{h} \in L^1(\mu, Y)$ and the support of $\hat{g} \subseteq$ the support of \hat{f} . By Lemma 2.10 in [7],

$$\|\hat{f}(t) - \hat{g}(t)\| \leq \|\hat{f}(t) - y\|$$
 for all $y \in Y$.

Hence

$$\left\| f(t) - \frac{\|f(t)\| \phi(\|g(t)\|)}{\|g(t)\| \phi(\|f(t)\|)} g(t) \right\| \leq \left\| f(t) - y \frac{\|f(t)\|}{\phi(\|f(t)\|)} \right\|.$$

Now take $h \in L^{\phi}(\mu, Y)$. Then

$$\frac{\phi(\|f(t)\|}{\|f(t)\|} h(t) \in Y$$
 a.e. *t*.

Hence $||f(t) - w(t)|| \leq ||f(t) - h(t)||$ a.e. t where

$$w(t) = \frac{\|f(t)\| \phi(\|g(t)\|)}{\|g(t)\| \phi(\|f(t)\|)} \cdot g(t).$$

Using the fact that $||g(t)|| \leq 2 ||f(t)||$ we will show that $w \in L^{\phi}(\mu, Y)$ as follows,

$$\|w(t)\| = \frac{\|f(t)\| \phi(\|g(t)\|)}{\phi(\|f(t)\|)} \leq \frac{\|f(t)\| \phi(2\|f(t)\|)}{\phi(\|f(t)\|)}$$
$$\leq \frac{\|f(t)\| [2\phi(\|f(t)\|)]}{\phi(\|f(t)\|)} = 2 \|f(t)\|;$$

hence $w \in L^{\phi}(\mu, Y)$. Thus $L^{\phi}(\mu, Y)$ is proximinal in $L^{\phi}(\mu, X)$. Q.E.D.

In [6], it was shown that if Y is reflexive in X then $L^1(\mu, Y)$ is proximinal in $L^1(\mu, X)$. We now prove that this holds also for $L^{\phi}(\mu, Y)$ in $L^{\phi}(\mu, X)$.

COROLLARY 2.6. If Y is a reflexive subspace of X then $L^{\phi}(\mu, Y)$ is proximinal in $L^{\phi}(\mu, X)$.

Proof. The corollary follows from the above theorem and Theorem 2.2 in [6].

3. Some Proximinal Sets in l^{ϕ} and $L^{\phi}(\mu)$

In Banach spaces, there are many conditions that imply the proximinality of a given set. A set $E \subseteq L^{\phi}(\mu)$ $(E \subset l^{\phi})$ is called *pointwise*

compact if every sequence in E has a subsequence that converges pointwise in E.

THEOREM 3.1. Let E be a pointwise compact set in $L^{\phi}(\mu)$. Then E is proximinal.

Proof. Let $f \in L^{\phi}(\mu)$, and $f_n \in E$ such that $||f_n - f||_{\phi} \to r = d(f, E) = \inf\{||f - g||_{\phi}: g \in E\}$. Since E is pointwise compact, we can assume with no loss of generality that $f_n(t) \to Z(t)$ a.e. t and $Z \in E$. Thus $\phi ||f_n(t) - Z(t)| \to_n \phi ||Z(t) - f(t)|$. Hence, by Fatou's lemma, we get

$$\int \phi |f(t) - Z(t)| d\mu(t) \leq \underline{\lim} \int \phi |f_n(t) - f(t)| d\mu(t)$$
$$= r.$$

Hence $||f - Z||_{\phi} = r = d(f, E).$

As a corollary to Theorem 3.1 we have:

THEOREM 3.2. Every closed ball B[x, 1] in l^{ϕ} is proximinal.

Proof. Let (x_n) be a sequence in B[x, 1]. Then (x_n) is a sequence in l^{\perp} , $||x_n||_1 \leq 1$. Since $l^{\perp} = c_0^*$, we can assume with no loss of generality that there exists Z, $||Z||_1 \leq 1$, such that $x_n \to Z$ in the w*-topology of l^{\perp} . In particular $x_n(k) \to Z(k)$, k = 1, 2, ... Thus $\phi |x_n(k) - x(k)| \to \phi |z(k) - x(k)|$. Using Fatou's lemma we get $||Z - x||_{\phi} \leq \underline{\lim} ||x_n - x||_{\phi} \leq 1$. Hence B[x, 1] is pointwise compact in l^{ϕ} . By Theorem 3.1, B[x, 1] is proximinal. Q.E.D.

THEOREM 3.3. Let M be a pointwise compact subset of l^1 . Then $M_{\phi} = M \cap l^{\phi}$ is proximinal in l^{ϕ} .

Proof. Let $f \in l^{\phi}M_{\phi}$, and $r = d(f, M_{\phi})$. Then there exists a sequence $\{f_n\} \subset M$ and a sequence $\{g_n\} \subset B[f, r] = \{k \in l^{\phi} : h - f \|_{\phi} \leq r\}$, such that $\|f_n - g_n\|_{\phi} \to 0$. Since $\{f_n\} \subset M$, then there exists a subsequence f_{n_j} which converges coordinatewise to $f \in M$. But $\{f_n - g_n\}$ converges coordinatewise to 0. Hence g_{n_j} converges to f_0 coordinatewise. By Fatou's Lemma we get $\|f_0 - f\|_{\phi} \leq \liminf \|g_{n_j} - f\| \leq r$. Hence $f_0 \in B_{\phi}[f_{0,r}] \cap M_{\phi}$ so $d(f, M_{\phi}) = \|f - f_0\|$. Q.E.D.

One might expect that for $x \in l^{\phi}$, and d(x, B[0, 1]) = r, that $B[x, r] \cap B[0, 1]$ contains an extreme point of either B[0, 1] or B[x, r]. That this is not the case in general follows from the following example:

EXAMPLE. Let
$$\phi(x) = x^p$$
, $p = \frac{1}{2}$, and $l_3^{\phi} = l_3^p = \{(x_1, x_2, x_3): x_i \in R\}$. Let

O.E.D.

 $x \in l_3^p$, $||x||_p > 1$. Then $x^* = x/||x||_p^{1/p} \in B[0, 1]$. Further if $x = \sum_{i=1}^3 x_i e_i$, then

$$\|x - x^*\|_p = \sum \left| x_i - \frac{x_i}{\|x\|_p^{1/p}} \right|^p$$

= $\frac{1}{\|x\|} \cdot \sum |x_i|^p \cdot [\|x\|_p^{1/p} - 1]^p$
= $[\|x\|_p^{1/p} - 1]^p.$

Now, choose $x = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$. For any *r*, the extreme points of B[x, r] are of the form $(\frac{1}{2}, \frac{1}{2}, a)$, $(\frac{1}{2}, a, \frac{1}{2})$, $(a, \frac{1}{2}, \frac{1}{2})$, where $|a - \frac{1}{2}| \leq \sqrt{r}$. Hence for any such extreme point θ , we have

$$\|\theta\| = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \sqrt{|a|} > 1.$$

Thus no extreme point of B[x, r] can be on B[0, 1].

On the other hand,

$$\|x - x^*\|_p = [\|x\|^2 - 1]^{1/2}$$
$$= [\frac{9}{2} - 1]^{1/2} = \sqrt{\frac{7}{2}}$$

But

$$||x - e_i||_p = \frac{3}{\sqrt{2}} > \sqrt{\frac{7}{2}} = ||x - x^*||,$$

for all i = 1, 2, ..., 6, where (e_i) are the extreme points of B[0, 1]. Hence no extreme point of B[0, 1] can be in B[x, r].

We remark that the previous example works also for the space l_3^1 . So the distance, even in case of finite-dimensional Banach spaces, need not be attained at extreme points.

Let $B_1 = B_1[0, 1] = \{x \in l^1 : ||x||_1 \le 1\}$. Set $B_{1\phi} = B_1 \cap l^{\phi}$ and $B_{\phi} = \{x \in l^{\phi} : ||x||_{\phi} \le 1\}$.

Remark. For a modulus function ϕ there exist a > 0, $\alpha > 0$ such that $\phi(x) \ge \alpha x$ for all x in [0, a) (see [4]).

THEOREM 3.4. Suppose ϕ is a strictly increasing modulus function such that $\phi(x) \ge x$ in (0, 1), $\phi(1) = 1$. Then the closed convex hull of B_{ϕ} in l^{ϕ} is $B_{1\phi}$.

Proof. Let $E_n = \{x \in l^{\phi}: \sum_{i=1}^n |x_i| \leq 1\}$. We claim that E_n is closed in l^{ϕ} .

To show this let $x \notin E_n$. Then $\sum_{i=1}^n |x_i| > 1 + \varepsilon$ for some ε ; $0 < \varepsilon < 1$. Now if $y \in B[x, \varepsilon] \cap E_n$, then $\sum_{i=1}^n |y_i| \le 1$ and $||x - y||_{\phi} \le \varepsilon$. But $|x_i| \le |x_i - y_i| + |y_i|$ hence

$$1 + \varepsilon < \sum_{i=1}^{n} |x_i| \le \sum_{i=1}^{n} |x_i - y_i| + \sum_{i=1}^{n} |y_i| \le ||x - y||_1 + 1$$

so $||x-y||_1 > \varepsilon$.

But $\sum_{i=1}^{n} \phi(|x_i - y_i|) < \varepsilon$, so $|x_i - y_i| < \phi^{-1}(\varepsilon) < 1$ for all i = 1, 2, ..., n. Hence $\phi(|x_i - y_i| \ge |x_i - y_i|)$ so $\varepsilon \ge ||x - y||_{\phi} \ge ||x - y||_1 > \varepsilon$. This contradiction proves that $B[x, \varepsilon] \cap E_n = \phi$; hence E_n is closed. But clearly $B_1 = \bigcap_{n=1}^{\infty} E_n$ which proves that $B_{1\phi}$ is closed in l^{ϕ} .

Let $\overline{\operatorname{co}} B_{\phi}$ be the closed convex hull of B_{ϕ} in l^{ϕ} . If $x \in B_{\phi}$ then $\sum_{i=1}^{\infty} \phi(|x_i|) \leq 1$ so $|x_i| \leq 1$ for all *i*, so $|x_i| \leq \phi |x_i|$. Hence $||x||_1 \leq ||x||_{\phi} \leq 1$ which implies that $B_{\phi} \subset B_{1\phi}$. But $B_{1\phi}$ is closed and convex so $\overline{\operatorname{co}} B_{\phi} \subset B_{1\phi}$.

Now let $x \in B_{1\phi}$, $x = \sum_{i=1}^{\infty} x_i e_i = \sum_{i=1}^{\infty} |x_i| e_i^*$ when $e_i^* = e_i$ if $x_i \ge 0$ and $e_i^* = -e_i$ if $x_i < 0$. Let $\varepsilon > 0$ be given, choose *n* such that $\sum_{n+1}^{\infty} \phi(|x_i|) < \varepsilon$, and let $x^* = \sum_{i=1}^{n} |x_i| e_i^*$; since $\sum_{i=1}^{n} |x_i| \le 1$, then $x^* \in \operatorname{co} B_{\phi}$, but $||x - x^*||_{\phi} = \sum_{i=n+1}^{\infty} \phi(|x_i|) < \varepsilon$ and hence $x \in \operatorname{co} B_{\phi}$ which proves our theorem. Q.E.D.

COROLLARY 3.5. $\overline{\operatorname{co}} B_{\phi}$ is proximinal in l^{ϕ} .

Proof. The proof follows from Theorems 3.3 and 3.4, and the fact that B_1 is pointwise compact in l^1 as shown in the proof of Theorem 3.2.

REFERENCES

- G. ALBINUS, Einige Beitrage zur approximation theories in metrischen vectoraumen, Wiss. Z. Tech. Univ. Dresden 15 (1966), 1-4.
- W. DEEB, Multipliers and isometries of Orlicz spaces, in "Proceedings of the Conference on Mathematical Analysis and Its Applications, Kuwait Univ., Kuwait, Feb. 18-21," 1985.
- 3. W. DEEB AND R. KHALIL, On the tensor product of a class of non-locally convex topological vector spaces, *Illinois J. Math.* 30 (1986), 594-601.
- 4. W. DEEB AND R. YOUNIS, Extreme points in a class of non-locally convex topological vector spaces, *Math. Rep. Toyama Univ.* 6 (1983), 95-103.
- 5. I. SINGER, "Best Approximation in Normal Linear Spaces by Elements of Linear Subspaces," Springer-Verlag, New York/Berlin, 1970.
- 6. R. KHALIL, Best approximation in $L^{p}(I, X)$, Math. Proc. Cambridge Philos. Soc. 94 (1983), 277–279.
- 7. W. A. LIGHT AND E. W. CHENEY, "Approximation Theory in Tensor Product Spaces," Lecture Notes in Mathematics, Vol. 1169, Springer-Verlag, New York/Berlin, 1985.