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Let X be a real Banach space and (Q, /l) a finite measure space. If r/J is an
increasing subadditive continuous function on [0, CXl) with r/J(O) = 0, then we set
L¢(/l, X) = {f: Q --> X: Ilfll¢ =Jr/J( Ilf(t)ll) d/l(t) < CXl}. One of the main results of
this paper is: "For a closed subspace Y of X, L¢(/l, Y) is proximinal in L¢(/l, X) if
and only if L 1(/l, Y) is proximinal in L 1(/l, X)." Hence if Y is a reflexive subspace
of X, then U(/l, Y) is proximinal in U(/l, X) for all 0 < p < 1. Other results on
proximinality of subsets of /¢ and L¢(/l) are presented as well. © 1989 Academic

Press, Inc.

INTRODUCTION

Let X be a real Banach space and Ya closed subspace of X. For x E X,
we let d(x, Y) = inf{ Ilx - yll: y E Y}. The subspace Y is called proximinal in
X if, for every x E X, there exists y E Y such that d(x, Y) = Ilx - yll. Such an
element y E Y is called a best approximant of x in Y. Set P(x, Y) =
{y: d(x, Y) = II x - y II }. In general P(x, Y) is empty. It is a very general and
important question "whether a subspace Y is proximinal in X or not." A
compactness argument shows that every finite-dimensional subspace Y is
proximinal in X. In case X is a metric linear space, then this is no longer
true [1]. We refer the reader to Singer [5J, for more on best approxima­
tion in Banach and metric spaces.

In this paper we study proximinality of some subsets and subspaces of
the sequence metric linear space /<P(X) and the function metric linear space
L <P(X), for modulus function r/J and some Banach space X.

In Section 2, we prove that if Y is any proximinal subspace of X, then
/<P( Y) is proximinal in /<P(X). Further, we prove that if Y is a reflexive
subspace of X, then L<P( Y) is proximinal in L<P(X). In Section 3, the
proximinality of some closed subsets in /<P is discussed. Throughout this
paper, (Q, J1) is a finite measure space. (j; denotes the complex numbers.
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1. THE SPACES Z"o(X) AND L"o(Ji, X)

69

A function rP: [0, 00) ~ [0, 00) is called a modulus function if:

(i) rP is continuous and increasing,

(ii) rP(x)=O if and only if x=O,

(iii) rP(x + y) ~ rP(x) + rP(y)·

Examples of such functions are rP(x) = xP, 0< P ~ 1, and rP(x) = In( 1+ x).
In fact if rP is a modulus function then t{t(x) = rP(x)/(l + rP(x)) is a modulus
function. Further, the composition of two modulus functions is a modulus
function.

For a modulus function rP and a measure space (Q, Ji) we set

1,,0 = {(an): n~l rP lanl < oo}

L"o(Ji) = {I: Q ~~: f rP III dJi < CO }-

00

Ilall"o = L rP lanl
n~l

Then one can easily prove:

and 11/11 ¢> = f rP IfI dJi.

LEMMA 1.1. (lif>, II II¢» and (L¢>(Ji), II II¢» are complete metric linear
spaces.

Further, it is known that I¢> r;; [l and L¢>(Ji) "2 L l(Ji). For more on I¢> and
L¢>(Ji) we refer the reader to [2-4].

For a Banach space X, we define

1¢>(X) = {(f(n)): n~l rP 11/(n)11 < co,f(n) E X}

L¢>(Ji, X) = {g: Q ~ X: f rP Ilg(t)11 dJi(t) < co }­

For IE 1¢>(X) and g E L¢>(Ji, X), set

I1I1I ¢> = L rP 11/(n) II and [lgll". = f rP Ilg(t)11 dJi(t).

Then the following result is similar to Lemma 1.1:
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LEMMA 1.2. (l¢(X), II II¢) and (L¢(fl, X), II II¢) are complete metric linear
spaces. If I¢ =1-1 1 (L¢(fl) =l-L 1(fl», then I¢ (L¢(fl» is not locally convex.

Let I¢ ® X be the algebraic tensor product of I¢ with X. Hence

For f E I¢ ® X, we define

where the infimum is taken over all representations f = l:~= 1 ui ® Xl.

LEMMA 1.3. If r/J is a modulus function that satisfies r/J(a . b) ~ r/J(a) . r/J(b),
then II 111t(¢) is a metric on I¢ ® X.

Proof The only point to be proved is: If Ilfll1t(¢)=0 then f=O. To see
ili~: /

If Ilfll 1t(¢) = 0, then for every k there exists a representation
f = l:~"= 1 u~ ® x~ such that l:~"= 1 IIu711 ¢. r/J IIx711 < 11k. Hence

The subadditivity and submultiplicativity of r/J imply:

It follows that infl:7"= 1 lIu~lIl Ilxill = 0, where Ilu~lll is the norm of u7 as an
element in 11. It follows that f = 0. Q.E.D.

The metric space I ¢® X need not be complete. We set I ¢®¢X to denote
its completion. In a very similar way we define L¢ ®¢ X. The space I¢ ®¢ X
can be considered as a space of r/J-nuclear operators from Co into X.

Using the idea in the proof of Theorem 2.1 [3], one can prove

¢ ~ ¢ ~

THEOREM 1.4. The spaces (l ®¢X, II II 1t(¢) and (L ®¢X, II 111t(¢) are
complete metric linear spaces.

The following, though simple, is an interesting result:
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THEOREM 1.5. Let ¢J be a submultiplicative modulus function. Then:

(i) IdJ ®dJ X is isometrically isomorphic to IdJ(X),

(ii) LdJ(Ji) ®dJX is isometrically isomorphic to LdJ(Ji, X).

Proof It is enough to prove (ii), for (i) is a special case of (ii). Since
simple functions are dense in LdJ(Ji), it follows that the set of elements of the
form L:7~ lIE, x,, E, n E

J
, is the empty set for i i= j and is dense in L dJ(Ji, X)

and that the set of elements of the form L:7=11E,@x,is dense in LdJ(Ji) ®¢x.
For fELdJ(Ji)0X, f=L:7=lU,0xi, the function FAt)=L:7=lU,(t)X,E

LdJ(Ji, X). Further

IJFrll dJ = ±f ¢J Ilult) xiii dJi(t)
(=1

= ±f ¢J lu,(t)1 . ¢J Ilx,ll dJi(t)
1=1

n

~ L IluilldJ' ¢J Ilx,ll.
,=1

(since ¢J is subadditive)

(since ¢J is submultiplicative)

Since this is true for every representation of 1, it follows that II Ffll dJ ~
Ilfll n(dJ)' Thus the map Ji'"(f) = Ff is bounded on a dense subspace of

dJ ~

L (Ji) 0dJ X.
For f=L:7~1 lE,0xi, E, disjoint measurable sets in Q, one has

n

IJFrll dJ = L Ji(EJ· ¢J Ilxili
,~1

n

= L 111d dJ ·¢J IlxI11
,~1

~llflln(dJ)'

Thus Ji'" is an isometric operator from a dense subspace of L dJ(Ji) ®dJ X
onto a dense subspace of LdJ(Ji, X). Consequently Ji'": LdJ(Ji) ®dJ X --10

LdJ(Ji, X) is an isometric onto operator. Q.E.D.

2. BEST ApPROXIMATION IN IdJ(X) AND LdJ(Ji, X)

In this section, we assume ¢J is a strictly increasing modulus function and
Y a closed subspace of X.

THEOREM 2.1. If Y is a proximinal subspace of X, then IdJ(y) is a
proximinal subspace of IdJ(X).
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Proof Let (f(n»E/¢(X). Since Y is proximinal in X, for each n, there
exists g(n)E Y such that d(f(n), Y)= Ilf(n)-g(n)ll. Further, Ilg(n)II";;
2 IIf(n) II· Consequently g=(g(n»E/¢(Y). We claim that g is a best
approximant for f in /¢( Y). To see that, let h be any element of /¢( Y). Then

n

Ilf -hll¢= L ¢J Ilf(n)-h(n)11
n=!

GO

~ L ¢J Ilf(n) - g(n)11
n~!

= Ilf -gll¢.

Hence d(J, /¢( Y» = Ilf - gll¢, and g E P(J, /¢( Y». Q.E.D.

The subspace Y is called a ¢J-summand of X if there is a bounded projec­
tion Q:X--+ Y such that ¢J(llxll)=¢J IIQxl1 +¢J(II(I-Q)xll) for all XEX
where I is the identity map on X. Clearly every ¢J-summand Y of X is
proximinal. In fact for x E X, Q(x) E P(x, Y). Theorem 2.1 is not true in
general for L¢(Il, X). However, the following is true:

THEOREM 2.2. Let Y be a ¢J-summand of X. Then L¢(Il, Y) is a
I-summand of L¢(Il, X).

Proof Let Q: X --+ Y be the associated projection for Y. Let
Q: L¢(j.l, X) --+ L¢(j.l, Y) be defined by

Q(f)(t) = Q(f(t».

Clearly Q(f) E L¢(j.l, Y). Further

¢J Ilf(t)11 =¢J IIQ(f(t)/1 +¢J 1I(I-Q)f(t)ll.

Hence,

J¢J Ilf(t)11 dj.l(t) = J¢J II Q(f(t» II dj.l(t) +f ¢J 1I(I-Q)f(t)11 dj.l(t).

So,

and consequently Q is the required projection.

As a corollary, we have

Q.E.D.

COROLLARY 2.3. If Y is a ¢J-summand of X, then L¢J(j.l, Y) is proximina/
in L¢(j.l, X).



BEST APPROXlMAnON IN U (I, X) 73

THEOREM 2.4. Let Y be a proximinal subspace of X. Then for every
simple function f E L¢J(J.l, X), P(j, L¢J(J.l, Y)) is not empty.

Proof Let f = I.7= I l E,x" where E, are disjoint measurable sets in a.
Set g = I.7~ I IE, Yi, where Y, EP(xi, Y). If h is any element in L¢J(J.l, Y), then

Ilf -hll¢J=f </J IIf(t)-h(t)11 dJ.l(t)

= ±f </J Ilf(t)-h(t)11 dJ.l(t)
1=1 £1

= ±f </J IIxi-h(t)1I dJ.l(t)
l=l £1

~ ±f </J Ilx,- Y,II dj1(t)
1=1 £,

= f </J Ilf(t) - g(t)11 dj1(t).

Hence Ilf-gll¢J=inf{llf-hll¢J:hEL¢J(J.l, Y)}.

Now we prove the main result of this section:

Q.E.D.

THEOREM 2.5. Let Y be a closed subspace of X. The following are
equivalent :

(i) U(J.l, Y) is proximinal in L¢J(J.l, X),

(ii) L I (J.l, Y) is proximinal in L I (J.l, X).

Proof (i) --+ (ii). Let f EL 1(J.l, X). Then f EL¢J(J.l, X); hence there exists
gEL¢J(j1, Y) such that Ilf-gll¢J~llf-hll¢J for all hEL¢J(J.l, Y). By an
argument similar to the one in Lemma 2.10 of [7] we conclude
that Ilf(t) - g(t)11 ~ IIf(t) - yll for all Y E Y a.e. t. Since 0 E Y one gets
Ilg(t)II~21If(t)11 a.e. t. Hence gELI(J.l,Y). Also Sllf(t)-g(t)lldJ.l~

S Ilf(t)-8(t)11 dJ.l for a1l8ELI(J.l, Y).
Conversely, (ii) --+ (i). Define a map J: L¢J(J.l, X) --+ L 1(J.l, X) by J(f) =1

where l(t)=(</J(llf(t)II)/llf(t)ll)f(t), if f(t)#O and l(t)=o if f(t)=O.
Clearly 111111 = Ilfll ¢J' Also since </J is one-to-one it follows that J is one-to­
one. To show that J is onto, let gEL I (J.l, X) and take /( t) =
(</J -l( Ilg(t)11 )/llg(t)ll) g(t) if g(t) = 0, and zero otherwise. Then II/II ¢J = II gil 1;
hence f E L¢J(J.l, X) and J(f) = g. It is also clear that

J(L¢J(J.l, Y)) = LI(J.l, Y).

Now let /EL¢J(J.l, X). Then lELI(J.l, X) and there exists gEL 1(j1, Y) such
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that III - gill ~ III - 11111 for all 11 E L I(f-l, Y) and the support of g£ the
support of 1 By Lemma 2.10 in [7J,

Hence

11/(t) - g(t)11 ~ 11/(t) - yll for all yE Y.

a.e. t.

II
Ilf(t)11 ¢J( Ilg(t)ll) II ,;::.11 t Ilf(t) II II

f(t)-llg(t)11 ¢J(llf(t)ll) g(t) '" f()- y ¢J(llf(t)ll) I'

Now take hE L¢(f-l, Y). Then

¢J(llf(t)11 h(t) Y
Ilf(t) II E

Hence Ilf(t) - w(t)11 ~ Ilf(t) - h(t)11 a.e. t where

Ilf( t) II ¢J( II g(t) II)
w(t)= Ilg(t)11 ¢J(llf(t)II) ·g(t).

Using the fact that Ilg(t)11 ~ 2 Ilf(t)11 we will show that WE L¢(f-l, Y) as
follows,

II (t)11 = Ilf(t)II ¢J(llg(t)II) ,;::.llf(t)11 ¢J(21If(t)ll)
w ¢J(llf(t)ll) '" ¢J(llf(t)ll)

,;::.llf(t)11 [2¢J(!lf(t)II)J =21If(t)II'
'" ¢J(llf(t)ll) ,

hence WE L¢(f-l, Y). Thus L¢(f-l, Y) is proximinal in L¢(f-l, X). Q.E.D.

In [6J, it was shown that if Y is reflexive in X then L I(f-l, Y) is
proximinal in L I(f-l, X). We now prove that this holds also for L¢(f-l, Y) in
L¢(f-l, X).

COROLLARY 2.6. If Y is a reflexive subspace of X then L¢(f-l, Y) is
proximinal in L¢(f-l, X).

Proof The corollary follows from the above theorem and Theorem 2.2
in [6].

3. SOME PROXIMINAL SETS IN l¢ AND L¢(f-l)

In Banach spaces, there are many conditions that imply the
proximinality of a given set. A set E£ L¢(f-l) (Ec.l¢) is called pointwise
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compact if every sequence in E has a subsequence that converges pointwise
in E.

THEOREM 3.1. Let E be a pointwise compact set in L1>(Jl). Then E is
proximina/.

Proof Let f EL1>(Jl), and fn EE such that Ilfn - 1111> -;. r =d(f, E) =
inf{ Ilf - gll1>: gE E}. Since E is pointwise compact, we can assume with no
loss of generality that fn(t) -;. Z(t) a.e. t and Z E E. Thus 1> Ifn(t) - Z(t)1 -;. n
1> IZ(t)-f(t)l· Hence, by Fatou's lemma, we get

f 1> If(t)-Z(t)1 dJl(t)~limJ1> l.f,(t)- f(t)1 dJl(t)

=r.

Hence Ilf - ZII1> = r = d(f, E).

As a corollary to Theorem 3.1 we have:

THEOREM 3.2. Every closed ball B[x, 1J in [1> is proximinal.

Q.E.D.

Proof Let (xn) be a sequence in B[x, 1]. Then (xn) is a sequence in lJ-,
Ilxnll l ~ 1, Since /.1 = ct, we can assume with no loss of generality that
there exists Z, IIZI11 ~ 1, such that X n -;. Z in the w*-topology of [.1. In
particular xn(k) -;. Z(k), k = 1, 2, .... Thus 1> Ixn(k) - x(k)1 -;.1> Iz(k) - x(k)l.
Using Fatou's lemma we get IIZ-xll1>~lim Ilxn-xll<p~1. Hence B[x, 1J
is pointwise compact in /<P. By Theorem 3.1, B[x, IJ is proximinal. Q.E.D.

THEOREM 3.3. Let M be a pointwise compact subset of [I. Then
M <p = M n /<P is proximina/ in /<P.

Proof Let f E /<PM <P' and r =d(f, M <p). Then there exists a sequence
Un} eM and a sequence {gn} C B[f, rJ= {k E [1>: h - fll1> ~ r}, such that
IIIn - g nil <p -;. 0. Since Un} C M, then there exists a subsequence fn) which
converges coordinatewise to f EM. But {fn - gn} converges coordinatewise
to 0. Hence g n) converges to fa coordinatewise. By Fatou's Lemma we get
lifo - fll <p ~ lim inf !Ign

j
- fll ~ r. Hence fa E B<p[fo,rJ n M <p so d(f, M <p) =

Ilf - fall· Q.E.D.

One might expect that for x E /<P, and d(x, B[O, 1J) = r, that
B[x,r]nB[O, 1] contains an extreme point of either B[O, 1] or B[x,r].
That this is not the case in general follows from the following example:
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xE/'3, Ilxllp>1. Then x*=x/llxll~/PEB[O,I]. Further if x=L7~lxien
then

II x - x *ll p= L IXi-ll~i~pr

=_1_. L Ix./ p · [llxll llP -1]PIlxll I p

= [llxll~/p-IY

Now, choose X= (!,!,!). For any r, the extreme points of B[x, r] are of
the form (!, !, a), (!, a, !), (a, !, !), where la -!/ :::; j;. Hence for any such
extreme point (), we have

1 1
II(}II = J2+J2+~ > 1.

Thus no extreme point of B[x, r] can be on B[O, 1].
On the other hand,

Ilx-x*lI p = [llxI1 2 -1]1/2

=n- 1]1/2=Jl

But

for all i = 1, 2, ..., 6, where (e,) are the extreme points of B[O, 1]. Hence no
extreme point of B[O, 1] can be in B[x, r].

We remark that the previous example works also for the space n. So the
distance, even in case of finite-dimensional Banach spaces, need not be
attained at extreme points.

Let BI =BI[O, 1] = {XE[I: Ilxlll:::; 1}. Set Blif>=BI "Iif> and Bif>= {xE/if>:
IIxllif>:::; I}.

Remark. For a modulus function ¢J there exist a> 0, a>°such that
¢J(x)~ax for all x in [0, a) (see [4]).

THEOREM 3.4. Suppose ¢J is a strictly increasing modulus function such
that ¢J(x) ~ x in (0, 1), ¢J( 1) = 1. Then the closed convex hull of Bif> in [if>

is Blif>'

Proof Let En = {x E Iif>: L~= I Ixil :::; I}. We claim that En is closed in Iif>.
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To show this let x ¢ En- Then L:7~1Ix,l > 1+e for some e; 0 < e< 1. Now
if YEB[x,e]nEn , then L:7=1IYil~1 and Ilx-Ylf(6~e. But Ix!l~

Ix,-Y,I + IYil hence

n n n

1+e< L Ixil ~ L Ix j - Y,I + L IY,I
,=1 i=l ,=1

~ flx-YIII + 1

so II x - YIII > e.
But L:7=1¢>(lx j-Yil)<e, so IXi-Yil<¢>-l(e)<l for all i=1,2, ...,n.

Hence ¢>(lx,-Yjl~lxi-Yil) so e~llx-YII(6~llx-YIII>e. This contra­
diction proves that B[x, e] n En = ¢>; hence En is closed. But clearly
B I = n:'=1 En which proves that B I ¢ is closed in l,p.

Let co B¢ be the closed convex hull of B¢ in I¢. If x E B,p then
L:r: 1<,b(lx,l) ~ 1 so Ixil ~ 1 for all i, so Ix,l ~ <,b IxJ Hence Ilxlll ~ Ilxll¢ ~ 1
which implies that B,pcB I ¢. But B1,p is closed and convex so coB,pcB1,p.

Now let xEB1¢, X=L::':lx,ej=L:f'=llx,1 ef when e~=e, if Xi~O and
ef = -e, if x,<O. Let e>O be given, choose n such that L::'+1 ¢>(lx,I)<e,
and let x*=L:7~llx,lef; since L:7=1Ix,I~1, then x*EcoB¢, but
Ilx-x*II,p=L::':n+1<,b(lxi l)<e and hence xEcoB,p which proves our
theorem. Q.E.D.

COROLLARY 3.5. co B¢ is proximinal in 1(6.

Proof The proof follows from Theorems 3.3 and 3.4, and the fact that
B 1 is pointwise compact in II as shown in the proof of Theorem 3.2.
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