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Let X be a real Banach space and (£, u) a finite measure space. If ¢ is an
increasing subadditive continuous function on [0, co) with ¢(0) =0, then we set
L, X)={f Q- X:||fl,={¢(Ilf (1)) du(r) < c0}. One of the main results of
this paper is: “For a closed subspace Y of X, L#(y, ¥) is proximinal in L#(y, X) if
and only if L'(y, Y) is proximinal in L'(u, X).” Hence if Y is a reflexive subspace
of X, then L”(y, Y) is proximinal in L?(y, X) for all 0 < p<1. Other results on
proximinality of subsets of /* and L?(u) are presented as well.  © 1989 Academic
Press, Inc.

INTRODUCTION

Let X be a real Banach space and Y a closed subspace of X. For xe X,
we let d(x, Y)=inf{||x— y||: y € Y}. The subspace Y is called proximinal in
X if, for every x € X, there exists y € ¥ such that d(x, Y)=||x — y|. Such an
element ye Y is called a best approximant of x in Y. Set P(x, Y)=
{y:d(x, Y)=|x—y| }. In general P(x, Y) is empty. It is a very general and
important question “whether a subspace Y is proximinal in X or not.” A
compactness argument shows that every finite-dimensional subspace Y is
proximinal in X. In case X is a metric linear space, then this is no longer
true [1]. We refer the reader to Singer [5], for more on best approxima-
tion in Banach and metric spaces.

In this paper we study proximinality of some subsets and subspaces of
the sequence metric linear space /%(X) and the function metric linear space
L?(X), for modulus function ¢ and some Banach space X.

In Section 2, we prove that if ¥ is any proximinal subspace of X, then
1#(Y) is proximinal in /¢(X). Further, we prove that if ¥ is a reflexive
subspace of X, then L?#(Y) is proximinal in L%(X). In Section 3, the
proximinality of some closed subsets in /¢ is discussed. Throughout this
paper, (£2, u) is a finite measure space. ¢ denotes the complex numbers.
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1. THE SPACES /(X)) AND L?(u, X)

A function ¢: [0, o0) — [0, o0) is called a modulus function if:

(i) ¢ is continuous and increasing,
(ii) ¢(x)=0if and only if x=0,
(iil)  d(x+y) <o(x)+¢(y).

Examples of such functions are ¢(x)=x”, 0<p<1, and ¢(x}=1In(1 + x).
In fact if ¢ is a modulus function then W(x) = ¢(x)/(1 + ¢(x)) is a modulus
function. Further, the composition of two modulus functions is a modulus
function.

For a modulus function ¢ and a measure space ({2, i) we set

4= {(a,,): S 4l < oo}
L‘”(ﬂ)={f19—> ¢ [ 617 du< oo}.
For a=(a,)e!? and fe L?(u) one can define
laly=Y #la,) and  |fls=]¢ 171 d

Then one can easily prove:

Lemma 1.1 (29, | l4) and (L), | l4) are complete metric linear
spaces.

Further, it is known that /? < /' and L%(u)= L*(u). For more on /% and
L?(u) we refer the reader to [24].
For a Banach space X, we define

14(x) = {(f(n)): > $10 < oo,f(n)eX}
L, X) = {g: - X: [ ¢ 10l dutt) < oo}.
For fel?(X) and ge L%(u, X), set

Iflg=X ¢ 1f(m)  and llgll¢=f ¢ 1 g(0)] du(2).

Then the following result is similar to Lemma 1.1:
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Lemma 1.2, (I%(X), || Ily) and (L%(u, X), | | ) are complete metric linear
spaces. If 12 # 1 (L(u) # L'(1)), then 1% (L?(y)) is not locally convex.

Let /Y ® X be the algebraic tensor product of /¢ with X. Hence

l¢®X={Z u;®x,;: u;el? and x,eX}.

i=1

For fel?® X, we define
1/ N 26 =inf{ Y ludly- ¢ lixll },
i=1

where the infimum is taken over all representations f=3"_, u;® x,.

LeMMA 1.3. If ¢ is a modulus function that satisfies ¢(a-b) < ¢(a) - ¢(b),
then || |l x4y is @ metric on 1Y ® X.

Proof. The only point to be proved is: If |||, =0 then f=0. To see
that: -

If | fllxp=0, then for every k there exists a representation
f=Xr% u; ®x¥ such that 3.7 | lufll, - 4 |x{]| < 1/k. Hence

ni

< 1
) [¢ Bl ',.; ¢ luf‘(j)l]<l;

1==1

The subadditivity and submultiplicativity of ¢ imply:
ny =<} X 1
o] - T s <
i=1 j=1 k

It follows that inf 3% | |lu*|, Ilx;]| =0, where [ju*||, is the norm of ¥ as an
element in /. It follows that £ =0. QE.D.

The metric space /*® X need not be complete. We set /¢ ® , X to denote
its completion. In a very similar way we define L? ® ; X. The space /* ® , X
can be considered as a space of ¢-nuclear operators from ¢, into X.

Using the idea in the proof of Theorem 2.1 [3], one can prove

THEOREM 14. The spaces (I° ® 4 X, |l llny) and (L? @4 X, || llxq)) are
complete metric linear spaces.

The following, though simple, is an interesting result:
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THEOREM 1.5. Let ¢ be a submultiplicative modulus function. Then:
(i) *®,X is isometrically isomorphic to 1*(X),
(i) L*(u) ®,X is isometrically isomorphic to L*(p, X).

Proof. 1t is enough to prove (ii), for (i) is a special case of (ii). Since
simple functions are dense in L?(p), it follows that the set of elements of the
form Y7_; 15 .., E,nE,, is the empty set for i # j and is dense in Lé(u, X)
and that the set of elements of the form 37, 1 o is dense in L) ®¢ X.

For fe L/(W)®X, f=X7_,u,®x,, the function F{)=%7_,uff)x €
L?(u, X). Further

n

1Fly= Y J & Nult) x| du(z) (since ¢ is subadditive)

=1

= i J & lult) - @ x| du(t) (since ¢ is submultiplicative)

< ‘; llaesll 4 - & 1]

Since this is true for every representation of f, it follows that |F/f,<
[/l z(sy- Thus the map #(f)=F, is bounded on a dense subspace of
L) ®, X.

For f=%7_, 1, ®x;, E, disjoint measurable sets in £, one has

1EAlg= Y, w(E)-¢ lIxil
=2 IMgly-¢lxl
=1
Z 1 o)

Thus % is an isometric operator from a dense subspace of L%(y) ® s X
onto a dense subspace of L?(u, X). Consequently F:L*(u)&®,X —
L?%(u, X) is an isometric onto operator. Q.ED.

2. BEST APPROXIMATION IN [#(X) AND L%(u, X)

In this section, we assume ¢ is a strictly increasing modulus function and
Y a closed subspace of X.

THEOREM 2.1. If Y is a proximinal subspace of X, then [*(Y) is a
proximinal subspace of 1%(X).
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Proof. Let (f(n))el?(X). Since Y is proximinal in X, for each n, there
exists g(n)e Y such that d(f(n), Y)=|f(n)—g(n)||. Further, ||g(n)|l <
2 | f(n)]. Consequently g=(g(n))el?(Y). We claim that g is a best
approximant for f in /4(Y). To see that, let / be any element of /%(Y). Then

If—hlly= 2 ¢ 1./ (n)—h(n)|

> 3 41700 g0

=1/~ &lly-
Hence d(f, I*(Y))= |/ — gll4» and g € P(f, I*(Y)). QED.

The subspace Y is called a ¢-summand of X if there is a bounded projec-
tion Q: X — Y such that ¢(|x|)=¢ |Ox| +¢(|(I—Q)x|) for all xeX
where I is the identity map on X. Clearly every ¢-summand Y of X is
proximinal. In fact for xe X, Q(x)e P(x, Y). Theorem 2.1 is not true in
general for L%(u, X). However, the following is true:

THEOREM 2.2. Let Y be a ¢-summand of X. Then L%(u, Y) is a
1-summand of L?(u, X).

Proof. Let Q:X—Y be the associated projection for Y. Let
O: L%(u, X) - L%(u, Y) be defined by

O(N)(1)=Q(f(1)).
Clearly O(f)e L?(u, Y). Further
SIS =g 12(f(Dl + ¢ II(T—Q) f(DI.

Hence,
[ 61700 du(t)= [ # 10U d(t)+ [ 8 17— ©) F(2) dyu).
So,
11y =18y + 1= Bl

and consequently  is the required projection. QE.D.

As a corollary, we have

COROLLARY 2.3. If Y is a ¢-summand of X, then L*(u, Y) is proximinal
in L*(u, X).
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THEOREM 24. Let Y be a proximinal subspace of X. Then for every
simple function fe L*(u, X), P(f, L*(u, Y)) is not empty.

Proof. Let f=37_,1;x, where E, are disjoint measurable sets in £.
Set g=Y7_, 1z, where y,€ P(x;, Y). If his any element in L%y, Y), then

1 = hlly= ¢ 17(0) — h(0)] du(o)
=3 [ #00-hol dutty

=3 [ 8l hto)) duto)

n

=Y |

=1 "E

¢ x,— yll du(r)

= [ ¢ 170 - g(0)] du(o)

Hence ||f — gl ,=inf{|f — Al ;: he L¥(yu, Y)}. Q.ED.

Now we prove the main result of this section:

THEOREM 2.5. Let Y be a closed subspace of X. The following are
equivalent:

(i) L%u, Y) is proximinal in L*(u, X),
(i) LYu, Y) is proximinal in L'(u, X).

Proof. (i)— (ii). Let fe L'(u, X). Then f e L%(u, X); hence there exists
geL%yu, Y) such that [f—gl,<|f—hls for all he Ly, Y). By an
argument similar to the ome in Lemma 2.10 of [7] we conclude
that |f(t)— gD < f(t)—yl for all yeY ae. t Since OeY one gets
eI <2 f(t)ll ae. r Hence geL'(y, ¥). Also ||f(1)—g(r)lldu<
§1Lf(2) —6(2)|| du for all e L'(y, Y).

Conversely, (ii) - (i). Define a map J: L?(u, X) = L'(u, X) by J(f) =1
where 7(2)= ((IfON/IAON) f(), if f(1)#0 and f(1)=0 if f(1)=0.
Clearly [|f1l; = f1ll4. Also since ¢ is one-to-one it follows that J is one-to-
one. To show that J is onto, let geLl(y, X) and take f(f)=
(6~ '(NgM)/1g()Nl) g(2) if g(r) =0, and zero otherwise. Then | fl|4=llg;
hence fe L?(u, X) and J(f)=g. It is also clear that

J(Lp, YY) =L'(n, Y).

Now let fe L?(u, X). Then feL'(u, X) and there exists g L'(y, Y) such
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that |/~ g|l,<If—Al, for all heL'(s, Y) and the support of ¢ < the
support of f. By Lemma 2.10 in [7],

I/(— g0l <If(r)y—yl  forall yeY.

Hence

I/ ¢(lg@®)
(N ¢(1A I

Now take Ae L*(u, Y). Then

gl
1A

Hence | f(¢) — w(t)|| < | f(¢) — A(¢)|| a-e. t where

_ Ol szl
g oA

Using the fact that ||g(1)l <2 [|f(¢)ll we will show that we L%(y, Y) as
follows,

|70~

g(t)jlgl'f(t)_y Q]! ﬂ

¢

h(t)eY  ae. t
w(t)

().

LA @1 #digN) 1A #2 11f(2)])

WOI="=5a0r0n S #Q70D
A1 L2600 ,
ST siron e
hence we L?(u, Y). Thus L#(u, Y) is proximinal in L%(u, X). Q.ED.

In [6], it was shown that if Y is reflexive in X then L'(y, Y) is
proximinal in L!(y, X). We now prove that this holds also for L#(u, ¥) in
L%y, X).

COROLLARY 2.6. If Y is a reflexive subspace of X then L%(u, Y) is
proximinal in L*(u, X).

Proof. The corollary follows from the above theorem and Theorem 2.2
in [6].
3. SoME PROXIMINAL SETS IN /¢ AND L%(u)

In Banach spaces, there are many conditions that imply the
proximinality of a given set. A set E< L%(u) (Ec1?) is called pointwise
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compact if every sequence in E has a subsequence that converges pointwise
in E.

THEOREM 3.1. Let E be a pointwise compact set in Lé(u). Then E is
proximinal.

Proof. Let feL%(u), and f,eE such that |f,—fll,»>r=d(f, E)=
inf{|f — gll;: g€ E}. Since E is pointwise compact, we can assume with no
loss of generality that f,(t) — Z(¢) a.e. t and Z € E. Thus ¢ | /(1) — Z(2)| —,
¢ |Z(t) — f(2)|. Hence, by Fatou’s lemma, we get

[ @170 = Z@) du(ey<tim [ ¢ 1£,6) = £0)] ()
=r.

Hence |/ — Z|l;=r=d(f, E). Q.ED.

As a corollary to Theorem 3.1 we have:

TuroreM 3.2.  Every closed ball B[ x, 1] in 1¢ is proximinal.

Proof. Let (x,) be a sequence in B[ x, 1]. Then (x,) is a sequence in /™,
Ix,l, < 1- Since [+ =c¥, we can assume with no loss of generality that
there exists Z, ||Z]|, <1, such that x,— Z in the w*-topology of [*. In
particular x,(k) > Z(k), k=1, 2, ... Thus ¢ |x, (k) — x(k)| = ¢ |z(k) — x(k)|.
Using Fatou’s lemma we get ||Z— x|, <lim ||x,— x| ,< 1. Hence B[x, 1]
is pointwise compact in /4. By Theorem 3.1, B[ x, 1] is proximinal. Q.E.D.

THEOREM 3.3. Let M be a pointwise compact subset of ['. Then
M,=Mn1? is proximinal in 1°.

Proof. Let fel’M 4> and r=d(f, M,). Then there exists a sequence
{f.} =M and a sequence {g,} < B[f,r]={kel’: h—f|,<r}, such that
I.fn—galls = 0. Since {f,} = M, then there exists a subsequence /., which
converges coordinatewise to /e M. But {f, — g,} converges coordinatewise
to 0. Hence g, converges to fj coordinatewise. By Fatou’s Lemma we get
||fo_f”¢ < lim inf Hgn]—f” <r. Hence fye B¢[f0,r] nM, so d(f, M¢) =
I/ = foll- QED.

One might expect that for xe/?, and d(x, B[0,1])=r, that
Bl x, r}n B[0, 1] contains an extreme point of either B[0, 1] or B[x, 1.
That this is not the case in general follows from the following example:

ExampLE. Let ¢(x)=x”, p=13, and /¢=14= {(x,, x,, x3): x,€ R}. Let
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xels, |xl,>1. Then x*=x/|x|.?eB[0,1]. Further if x=3Y}_, x.e,
then

14

|| — .
”x"x””"z‘* B

“ i -2 - Cllxll 7 — 177
= [lx];”— 17

Now, choose x= (4, 3, ). For any r, the extreme points of B[x, r] are of
the form (3, 4, @), (3, 4, 1), (a, £, 1), where |a— 4] < \/; Hence for any such
extreme point 6, we have

I|9||———+ la| > 1.

VAV

Thus no extreme point of B[x, ] can be on B[O, 1].
On the other hand,

e =¥, = [lxl” ~ 13"
=[3-11"=V%

But

llx—e,ll =—3—>ﬁ—llx—x*ll
ip \/5 2" s

for all i=1, 2, ..., 6, where (e,) are the extreme points of B[O, 1]. Hence no
extreme point of B[0, 1] can be in B[x, r].

We remark that the previous example works also for the space /3. So the
distance, even in case of finite-dimensional Banach spaces, need not be
attained at extreme points.

Let B, =B,[0,1]={xel': ||x||,<1}. Set B;;=B,n!%and B,;= {xel’
[xlly <1}

Remark. For a modulus function ¢ there exist a>0, «>0 such that
#(x) = ax for all x in [0, a) (see [4]).

THEOREM 3.4. Suppose ¢ is a strictly increasing modulus function such
that ¢p(x)zx in (0,1), ¢(1)=1. Then the closed convex hull of B, in A4
is Byy.

Proof. Let E,={xel?:>"_, |x;] <1}. We claim that E,, is closed in /*.
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To show this let x¢ E,. Then 37_, |x,| > 1+¢ for some & O <e<1. Now
if yeB[x,e]lnE,, then >7_,|y/<1 and [x—ypl,<e But [x|<
lx,— | + |y hence

1+8<Z Ixx‘sz |xi—yll+z Iyzl

1=1 i=1 1=1

<lx—yll+1

so |x—yll, >e

But 37, d(|x;—yil)<e, so |x;—yl<¢ " He)<1 for all i=1,2,..,n
Hence ¢(lx,—yl=1x;—yl) so e=[x—yll;=x—yll,>e This contra-
diction proves that B[x,e]nE,=¢; hence E, is closed. But clearly
B, =\, E, which proves that B, is closed in /*.

Let €0 B, be the closed convex hull of B, in [’ If xeB, then

iolx)<1so x| <1 forall i so |x,|<¢|x,]. Hence ||, <|Ix],<1
which implies that B, < B,,. But B, is closed and convex so €0 B, < B, .

Now let xe By, x=22, x,e;=3{2, |x,| e} when ef=e, if x,>0 and
ef= —e, if x,<0. Let £>0 be given, choose n such that >, , é(Ix,]) <s,
and let x*=37_,|x|e’*; since >7_,|x[<1, then x*ecoB,, but
lx—x*,=22,+10(x])<e and hence xeTo B, which proves our
theorem. Q.ED.

COROLLARY 3.5. TO B, is proximinal in [°.

Proof. The proof follows from Theorems 3.3 and 3.4, and the fact that
B, is pointwise compact in /' as shown in the proof of Theorem 3.2.
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